Respiration laboratory handout – Trout in the Classroom

Prepared by Megan Kepler, PA Cooperative Fish and Wildlife Research Unit, Penn State University

Contact information: mvk10@psu.edu

Laboratory questions prior to experimentation:

Students may be asked to develop hypotheses regarding testing different variables including:

- a.) How do you think respiration will vary with temperature? Why?
- b.) How do you think respiration will vary with fish size? Why?
- c.) Would you suggest respiration differences if fish were individually placed in tanks or experiments were conducted on groups of fish?
- d.) Other variables that could influence respiration rate?
 - a. Have students in class list potential variables to test and develop potential experiments to address various questions.

Experimentation

- 1.) Acclimate fish to be used for respiration experiment to test temperature prior to experiment
- 2.) Prepare water bath for experimentation, fill respiration units (Fernbach Flasks)

a. Measure the water volume in the flasks (for oxygen calculation)
--

	b.	Volume
3.)	Take i	nitial dissolved oxygen reading and temperature
		DO initial

- 4.) Weigh fish and place in chamber, fill chamber to top with water and seal with stopper (make sure not to have any air space in chamber)
 - a. Once fish is place in chamber record starting time for each chamber

Chamber	Weight	Starting time
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

5.) Once all fish are placed in chambers, allow fish to respire for a period of time (duration will depend on fish size and water temperature – generally 45mins to 3 hours)

- 6.) End of experiment, Remove stopper and take a DO reading in each chamber
 - a.) Record stop time

Chamber	DO final	Stop time
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

7.) Return fish back to tank (make sure water temperature is appropriate or acclimate them back to ambient temperature)

8.) Calculations

- a. Change in Dissolved oxygen → Initial Final
- b. Duration in days → time hours to time days
- c. Milligrams of oxygen $\rightarrow \Delta DO$ *volume
- d. Specific respiration rate →mg oxygen/g fish/days

Chamber	ΔDO	Duration	Duration	Volume	$mg O^2$	Spec.
		(hours)	(days)	(1)		Spec. Respiration
						(mg/g/day)
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						

Other variables to examine:

- -Raise/lower temperature and repeat experiments
- -Complete experiments across a wide range of sizes
- -Individual vs. group experiments
- -Others?

Exercises:

- 1.) Plot Specific Respiration (response variable) and predictor variables (temperature, weight)
- 2.) Examine relationships
- 3) Relate to physiology and management or hypothetical scenarios